OGDE3: Opposition-Based Third Generalized Differential Evolution

نویسندگان

  • Farid Bourennani
  • Shahryar Rahnamayan
  • Greg F. Naterer
چکیده

Multi-Objective Optimization (MOO) metaheuristics are commonly used for solving complex MOO problems characterized by non-convexity, multimodality, mixed-types variables, non-linearity, and other complexities. However, often metaheuristics suffer from slow convergence. Opposition-Based Learning (OBL) has been successfully used in the past for acceleration of single-objective metaheuristics. The most successful example in this regard is Opposition-based Differential Evolution (ODE). However, OBL was not fully explored for MOO metaheuristics. Therefore, in this paper, to the best of our knowledge, for the first time OBL is successfully adapted for a MOO metaheuristic by using a single population (no coevolution). The proposed MOO metaheuristic is based on the GDE3 method and it is called Opposition-based GDE3 (OGDE3). OGDE3 utilizes OBL for opposition-based population initialization and self-adaptive oppositionbased generating jumping. Furthermore, the new algorithm is compared with seven state-of-the-art MOO metaheuristics using the ZDT test suite. OGDE3 outperformed the other algorithms; the results are explained and discussed in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opposition-Based Learning in Compact Differential Evolution

This paper proposes the integration of the generalized opposition based learning into compact Differential Evolution frameworks and tests its impact on the algorithmic performance. Opposition-based learning is a technique which has been applied, in several circumstances, to enhance the performance of Differential Evolution. It consists of the generation of additional points by means of a hyper-...

متن کامل

Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems

This paper presents a novel algorithm based on generalized opposition-based learning (GOBL) to improve the performance of differential evolution (DE) to solve highdimensional optimization problems efficiently. The proposed approach, namely GODE, employs similar schemes of opposition-based DE (ODE) for opposition-based population initialization and generation jumping with GOBL. Experiments are c...

متن کامل

Enhancing particle swarm optimization using generalized opposition-based learning

Particle swarm optimization (PSO) has been shown to yield good performance for solving various optimization problems. However, it tends to suffer from premature convergence when solving complex problems. This paper presents an enhanced PSO algorithm called GOPSO, which employs generalized opposition-based learning (GOBL) and Cauchy mutation to overcome this problem. GOBL can provide a faster co...

متن کامل

Solving Large Scale Optimization Problems by Opposition-Based Differential Evolution (ODE)

This work investigates the performance of Differential Evolution (DE) and its opposition-based version (ODE) on large scale optimization problems. Opposition-based differential evolution (ODE) has been proposed based on DE; it employs opposition-based population initialization and generation jumping to accelerate convergence speed. ODE shows promising results in terms of convergence rate, robus...

متن کامل

Centroid Opposition-Based Differential Evolution

The capabilities of evolutionary algorithms (EAs) in solving nonlinear and non-convex optimization problems are significant. Differential evolution (DE) is an effective population-based EA, which has emerged as very competitive. Since its inception in 1995, multiple variants of DE have been proposed with higher performance. Among these DE variants, opposition-based differential evolution (ODE) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JACIII

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2012